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Abstract
The microscopic mechanisms leading to crystallization are not yet fully
understood. This is due, in part, to the lack of atomistic as well as interatomic
interaction models for a wide range of materials that can lead to crystallization
on a computer-simulation timescale, i.e. <100 ns. While the nucleation in
close-packed systems has been extensively studied, there are almost no
numerical results for covalent tetrahedral semiconductors. We present here
the simulation results of crystallization from the liquid and amorphous states
of a 1000-atom model of silicon, described with a modified Stillinger–Weber
potential. With this potential, it is possible to crystallize the model in as little
as a few nanoseconds, which opens a door to detailed studies of the nucleation
processes in covalent systems. Using topological analysis, we also present a
first characterization of the structural fluctuations of the nucleation centres in
this system and give a rough estimate for the critical size of these centres.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nature of crystallization on the atomic level is a topic of major fundamental and
technological interest. This is particularly true for covalent materials such as tetrahedral
semiconductors, which show great variation in structure and density between the liquid and
solid phases. These properties create some considerable challenges for a detailed microscopic
understanding of the crystallization process in such materials: while crystallization of simple
liquids has been realized numerically a long time ago [1–3], relatively little progress has been
accomplished for simulations of more complex materials.
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There exists a considerable body of literature, essentially experimental and computational,
on crystallization in covalent materials, mostly Si (see [4–11]). It is usually possible
to extract certain relevant information, such as crystallization interface velocity, from the
experiments, but these measurements typically take place on a timescale too short for a
detailed characterization of the onset of nucleation in these systems [6, 11]. In the area
of computer simulations, the main efforts have been concentrated on the growth processes at
crystal–liquid [4, 5] or amorphous–liquid [8] interfaces, which are important for understanding
a number of experiments, including excimer laser crystallization and solid-phase epitaxial
growth. Although providing important information about the structure of the liquid near the
growth interface or the front velocity and the stability of different surface orientations, these
simulations do not identify the basic mechanisms and topological structures responsible for
nucleation. Studies addressing these particular issues in tetrahedral covalent materials are
rare. Uttormark et al [7] provided a study of the crystal dissolution in liquid Si which seems
to contradict the experimental conclusions of Stolk et al [6]. More recently, Bording and
Taftø used the Tersoff’s potential [12] to evaluate the relative stability of a crystalline grain
in an amorphous matrix and identify the critical nucleus size for Ge [10]. However, in the
aforementioned works a crystalline seed has to be placed into the system ‘by hand’, which
produces an initial structure which might not be favoured by the dynamics of nucleation, as
was shown recently for other materials [13].

The difficulty in reaching the same type of understanding for the nucleation of covalent
solids as we have for Lennard-Jones systems is a problem of timescale. While the latter crys-
tallize from the liquid in a matter of picoseconds, the time required for crystallization from the
melt of Si or Ge is expected to be well beyond the reach of ab initio or tight-binding molecular
dynamics. Empirical potentials, on the other hand, have numerous shortcomings [14] and have
failed to reproduce the crystallization of covalent tetrahedral materials from the liquid phase.

In this paper, we revisit this problem using the modified Stillinger–Weber (mSW)
interaction [15], a potential adjusted to generate a good quality amorphous phase for Si, i.e. with
narrow spread of bond-angle distribution,very few coordination defects,and correct vibrational
properties. Using this potential, we find that it is possible to crystallize both a liquid, from high
temperature, and an amorphous network, heated from 0 K, providing a detailed microscopic
picture of the process of crystallization. The grain growth, up to the limits of a 1000-atom cell,
is almost isotropic and proceeds as soon as random fluctuations produce a crystalline cluster,
containing ≈350–400 atoms. Because the mSW potential was not explicitly fitted to the liquid
and crystalline phases of Si, our simulations are unlikely to describe any specific material in
great detail; they should, however, provide a qualitative picture of crystallization in covalent
materials, on a timescale reachable by the method of molecular dynamics.

The next section describes the details of our simulation techniques and our choice of
order parameter used to monitor the level of crystallinity in a model. We then present the
results for crystallization of our model from the liquid phase and from a molten amorphous
configuration. For comparison, we also provide the results of the same simulation using the
environment-dependent interaction potential (EDIP) of Justo et al [16], which shows how
sensitive the timescale of crystallization is to the choice of potential. The explicit forms of the
mSW potential and EDIP are given in the appendix.

2. Simulation details

We consider two routes to crystallization:

(1) starting from a liquid, we slowly cool the configuration below the melting point, until the
diffusion becomes negligible; and
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Figure 1. The two ring structures used as order parameters to characterize the state of crystallization
in our simulation. Left, a ten-atom cluster with four sixfold rings forming the smallest topologically
crystalline state in the zinc-blende structure. Right, an eight-atom cluster with three sixfold-
membered rings back to back forming the smallest three-dimensional loop structure in hexagonal
crystals.

(2) we heat a model of a-Si to a high temperature slightly below the melting point of the
crystal and follow the recrystallization.

All the simulations are done with a 1000-atom cell, in the canonical ensemble, using
Gauss’s principle of least constraint to keep the temperature constant [17]. The density of the
model in both cases is fixed to that of crystalline silicon.

There is some freedom in selecting an order parameter to follow the onset of
crystallization. In Lennard-Jones systems, for example, researchers have used both cluster-
based analysis [18, 19] and geometrical analysis based on icosahedral symmetries [20, 21].
Because of the covalent nature of the bonding in the mSW model, the cluster-based analysis
is preferable in our case as it allows us to follow the crystallization process on a local scale.
As both a-Si and c-Si show tetrahedral order, it is necessary to select clusters that contain
more than just the first shell of neighbours. They are also required to be somewhat rigid, so
that a topological analysis is sufficient to uniquely define the shape of these clusters. The two
smallest topologically crystalline states in Si are three-dimensional ring structures, which can
be employed as elementary building blocks of the zinc-blende (diamond-like) and hexagonal
(ice-like) structures, as shown in figure 1. The first state is formed from four native sixfold
rings, connected at alternating points along the rings. This 10-atom cage structure uniquely
defines the basic building block of the zinc-blende structure. Although the hexagonal structure
is not a ground state of silicon, it can also be encountered in small crystalline grains. We
define the hexagonal building block as three sixfold rings, that are bonded together at two
points forming an eight-atom structure. The density of these basic building blocks is close to
zero in good quality a-Si models [22]. They represent, therefore, an excellent choice of order
parameters for crystallization study.

To study crystallization from the liquid phase we employ the ‘quench-from-the-
melt’ (QFM) technique which has already been used a number of times, with a wide variety of
interactions [16, 23–25], to generate models of a-Si and a-Ge. In many previous simulations,
during the cooling, the three-body interaction was often increased by 50–100% above the
original SW values [23, 24, 26] in order to force the solidification of the model. No
crystallization was reported in this early literature because the time system spent in the
temperature range that favours this process was too short (tens of picoseconds instead of
nanoseconds). As we show in the next section, even at this ‘right’ temperature—which is just
below melting—the crystallization in our model does not start until at least after 0.5 ns.
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Following the path of many previous simulations, we keep the volume fixed at the value
corresponding to the experimental density of c-Si. Although such a procedure is hard to
replicate experimentally, it simplifies the handling of thermodynamics around the phase
transition and makes it easier to compare with other simulations. Given the difficulty previously
encountered in crystallizing a complex liquid, a constant-volume simulation should minimize
the number of hurdles slowing down the crystallization process. Such constraint is not formally
necessary, however, and constant-pressure simulations are under way.

3. Results

3.1. Crystallization from the liquid phase

Our simulation proceeds as follows:

(i) The 1000-atom c-Si supercell is melted during a 2 ns constant-temperature anneal at
3000 K, well above the c-Si melting point for mSW potential.

(ii) The supercell is then gradually cooled down by reducing the temperature in 200 K steps
in the 3000–2400 K interval and 100 K steps below 2400 K, and running for 0.5 ns at each
step.

The simulation is stopped when diffusion becomes negligible. The results for this
simulation are summarized in figures 2 and 3. At 3000 K, the radial distribution function,
g(R), of our model exhibits liquid-like behaviour, showing features similar to those computed
for l-Si by Cook and Clancy [14] using Tersoff’s potential [12]; this is confirmed by the atomic
diffusion shown in figure 3. As with Tersoff’s potential, the structure in the g(R) beyond the
first-neighbour peak at high temperature is likely due to a low atomic density and a relatively
strong three-body interaction.

As the annealing temperature goes down (2400–2100 K), the g(R) becomes more
structured and starts resembling that of a-Si: the dip between the first- and second-neighbour
peaks deepens and the peaks narrow. Below 2100 K, however, the broad second-neighbour
peak begins to split into two narrower peaks corresponding to atomic shells in the crystalline
structure. Other peaks also start forming beyond 5 Å. The crystallization process can also be
followed with atomic diffusion (figure 3), which decreases smoothly in the liquid phase but
falls brutally as the temperature of the system is brought from 2100 to 1900 K, when the lattice
essentially freezes over.

The structural data for the model, after quenching to 0 K, for final annealing temperatures
of 2100, 2000, and 1900 K is shown in figure 4. There is a clear qualitative structural change
among these three structures. The structure annealed at 2100 K shows properties typical of a
very good amorphous model: the dihedral-angle distribution is structureless, the bond-angle
distribution is almost a Gaussian of width 11.16◦ and the g(R) is smooth with a clear gap
between the first- and second-neighbour shells. This is in sharp contrast with the structures
at 2000 and 1900 K where the bond-angle distributions have widths of 8.57 and 6.41◦, the
dihedral-angle distributions develop a sharp peak at 60◦ and the g(R) is clearly crystalline.

The role of the potential in achieving crystallization is underscored by a simulation,
performed in the same fashion but with EDIP [16]. Starting from the liquid phase at 2300 K,
as prepared using mSW, the cell is re-equilibrated with EDIP at the same temperature for
0.5 ns. The temperature is then lowered in 100 K steps, running for 0.5 ns at each temperature,
until the diffusion becomes negligible. As shown in figure 5, the supercooled regime persists
to a much lower temperature than in the case of the mSW anneal. The atomic diffusion
(not shown) stops only at around 1100 K, at which point, the structure freezes in a good
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Figure 2. The radial distribution function, g(R), for the 1000-atom QFM model, created with
the mSW potential, calculated after anneals (with no subsequent quench) at different annealing
temperatures.

quality amorphous configuration. There is no hint of crystallization at any point during the
simulation. The difference in system’s behaviour upon cooling with the mSW potential or
EDIP can be attributed to the fact that in the liquid phase the former potential favours the
fourfold environment, which helps to achieve crystallization after a few nanoseconds.

3.2. Crystallization from the amorphous phase

In order to better characterize the crystallization process, we also perform a constant-
temperature anneal for the 1000-atom model of Barkema and Mousseau [27] prepared using a
bond-switching method. Prior to the main simulation, we have computed the atomic diffusion
in the model at several constant temperatures and found that for the mSW potential it becomes
substantial (larger than the atomic bond length per nanosecond) above T ≈ 2000 K. The
main simulation is then done at 2100 K, for 2 ns, with atomic coordinates saved every 200 fs.
Figure 6 shows the two order parameters, i.e. the number of cubic and hexagonal building
blocks, as a function of time for this simulation. At the beginning of the simulation, the cell is
mostly disordered, with very little crystalline structure; between 0.6 and 0.9 ns, however, we
see a rapid ordering, with more than 98% of the atoms belonging to crystalline building blocks
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Figure 3. Diffusion in the 1000-atom QFM model for Si, created with the mSW potential, during
anneals in 3000–2100 and 2100–1900 K (see inset) temperature intervals.

Figure 4. Bond-angle (upper left panel) and dihedral-angle (upper right panel) distributions, and the
g(R) for 1000-atom QFM model for Si, created with the mSW potential, calculated after annealing
and subsequent quenching for annealing temperatures of 2100, 2000, and 1900 K.
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Figure 5. The g(R) for the 1000-atom QFM model for Si, created with EDIP, calculated after
anneals (with no subsequent quench) at different annealing temperatures.

at the end of this time interval. The second nanosecond shows only local rearrangements, but
no overall rebonding. This transition can also be followed in the diffusion data, shown in the
right inset of figure 6. In the early time of the simulation, the amorphous solid essentially
melts, with a total diffusion of about 10 Å/atom, but as soon as crystallization has taken place
the diffusion slows down to almost zero. This agrees with a well known fact that experimental
melting point of a-Si is lower than that of its crystalline counterpart [28]. In the left inset of the
same figure we show the number of atoms belonging to the crystalline island (the largest cluster
constructed of interconnected crystalline building blocks) as the simulation goes on. We can
see that the process of crystallization starts when the island contains 350–400 atoms. We
should point out, however, that our choice of elementary building blocks tends to overestimate
the size of crystalline islands because, first, even substantially strained network regions are
considered crystalline if they retain crystalline bonding and,second, the building blocks include
many atoms, some of which could be only marginally crystalline. For example, the number
of clusters in the crystal nucleus is about 300, out of a total of 3000 for this 1000-atom model,
i.e., only 10% of all clusters are formed at this point. Using a similar atomic proportion would
give a critical size of about 100 atoms. This number is in line with a critical nucleus of about
200 atoms found for stabilizing a crystallite of Si in an amorphous matrix, as reported in a
numerical study by Bording and Taftø [10].
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Figure 6. The number of cubic and hexagonal building blocks in 1000-atom model of a-Si during
a 2 ns constant-temperature anneal with the mSW potential. The atomic diffusion and the number
of atoms in a crystalline island are shown on the insets.

With the help of figure 7, the simulation gives us some insight into the crystallization
process in covalent materials. Although the potential only goes out to second neighbours, even
in the initial stage of the simulation (the first 0.5 ns) small ‘crystallites’, that are constantly
formed and destroyed, are mostly composed of the cubic blocks (see, for example, figures 7(a)
and (b)). Around 0.5 ns, a larger crystalline island emerges (see figure 7(c)) and starts growing
rapidly. New crystallites, mainly of hexagonal type, are formed at the surface of the island.
It soon reaches the size of the unit cell and forms grain boundaries between itself and its
images, as shown in figures 7(d) and (e). Again, these grain boundaries contain mainly
hexagonal blocks, while the core of the island consists of cubic blocks. At 0.9 ns almost
all of the supercell has become crystalline (figure 7(f)) and only a few thin hexagonal-type
grain-boundary sheets are left in the system. It is worth noting that the position of the peak
in hexagonal-block concentration at 0.6–0.8 ns in figure 6 coincides well with the kink in the
cubic-block concentration marking the disordered-to-crystalline transition which is due to the
fact that, according to the data presented in figure 7, the island growth during the transition
proceeds mainly by forming new hexagonal blocks on the island’s surface.

These figures do not indicate any preferential orientation for the growth of the nucleus,
in agreement with the work of Bording and Taftø [10] on the growth of a crystal seed in an
amorphous matrix but in contrast with the results of the pioneering work of Landman and
Luedtke [5] on epitaxial crystal growth from the melt. This might be due to the fact that
both the Bording–Taftø and our simulations were done at constant temperature, while that of
Landman and Luedtke simulated the propagation of a laser pulse, therefore imposing a heat
flow.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Crystalline islands in the 1000-atom model of a-Si during a 2 ns constant-temperature
anneal with the mSW potential: (a) at 100 ps, (b) at 300 ps, (c) at 500 ps, (d) at 700 ps, (e) at
800 ps, and (f) at 1 ns. Atoms shown in dark grey and white belong to cubic and hexagonal blocks
respectively. Atoms not belonging to any crystalline building blocks are not shown.
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4. Conclusions

The last few years have seen a resurgence of interest in the onset of crystallization. While
numerical studies have been mostly limited to close-packed materials, we have shown that
it is now possible to also study this phenomenon in tetrahedral covalent semiconductors.
We found that, during the growth, the interface with the liquid contains a high density of
hexagonal building blocks that transform into zinc-blende-type blocks as the crystal grows.
This phenomenon has not been reported in any other experiment or simulation of crystal
growth and will be studied in details in future. Obviously, much more work is required to
gain understanding of the nucleation process in tetrahedral covalent materials on the level
of quantitative predictions (nucleation and growth rate, defect density, etc). More realistic
simulations for larger models are under way to characterize the phase diagram of the system
and the details of the nucleation process in it.
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Appendix

Both the Stillinger–Weber potential [15] and the environment-dependent interatomic potential
of Justo et al [16] for silicon can be described with a general formula, containing two- and
three-body interatomic interactions:

E({Ri}) =
∑
〈i, j〉

v2(Ri j , Zi ) +
∑

〈i, j,k〉
v3(Ri j,Rik, Zi), (A.1)

where {Ri} is the set of atomic coordinates and Zi is a local-environmentparameter for atom i .
For the Stillinger–Weber potential, which does not explicitly depend on the parameter Zi ,

the two- and three-body interaction terms have the following form:

v2(Ri j) = ε A

[
B

(
Ri j

σ

)−p

− 1

]
exp

{
1

Ri j/σ − a

}
�(Ri j/σ − a), (A.2)

v3(Ri j,Rik) = ελ exp

[
γ

Ri j/σ − a
+

γ

Rik/σ − a

]

× (cos θ j ik + 1/3)�(Ri j/σ − a)�(Rik/σ − a). (A.3)

Here �(x) is the Heaviside step function, θ j ik is the angle between bonds Ri j and Rik , and ε,
A, B , σ , p, a, λ, and γ are the fitting parameters (see table A.1). The interaction range of the
potential is governed by parameters σ and a, that place the interaction cut-off at ≈3.77 Å—
between the first-and second-neighbour distances for c-Si. The main property of the three-body
term is that it penalizes any deviation from an ideal diamond structure bond angle (for which
cos θ j ik = −1/3), thus favouring perfect tetrahedral bonding in the material.

In EDIP, on the other hand, both interaction terms carry an explicit dependence on local-
environment parameter Zi = ∑

m �=i f (Rim), where f (Rim) is a cut-off function that measures
the contribution of neighbour m to the coordination of atom i in terms of interatomic separation
Rim .
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Table A.1. Parameters for the standard and mSW potentials.

Parameter Standard SW Modified SW

ε (eV) 2.168 26 1.648 33
A 7.049 556 277 7.049 556 277
B 0.602 224 5584 0.602 224 5584
σ (Å) 2.095 1 2.095 1
p 4 4
a 1.80 1.80
λ 21.0 31.5
γ 1.20 1.20

The two-body term of the potential includes repulsive and attractive interactions:

v2(Ri j , Zi) = A

[(
B

Ri j

)ρ

− p(Zi)

]
exp

{
σ

Ri j − a

}
, (A.4)

which go to zero at the cut-off distance a (≈3.12 Å). The environment-dependent part is
represented by a Gaussian function: p(Zi) = exp(−β Zi).

The three-body term contains radial and angular parts:

v3(Ri j ,Rik, Zi ) = g(Ri j)g(Rik)h(cos θ j ik, Zi ), (A.5)

where the radial function g(r) = exp(γ /(r − a)) has the same form as for the Stillinger–
Weber potential and goes to zero smoothly at the cut-off distance a. The angular function
h(cos θ, Z) has strong dependence on the local coordination through two functions that control
the equilibrium angle and the interaction strength. Its detailed description is provided in [29].

References

[1] Frenkel D and McTague J P 1980 Annu. Rev. Phys. Chem. 31 491
[2] Oxtoby D W 1988 Adv. Chem. Phys. 70 263
[3] Huitema H E A, van der Eerden J P, Janssen J J M and Human H 2000 Phys. Rev. B 62 14 690
[4] Abraham F F and Broughton J Q 1986 Phys. Rev. Lett. 56 734
[5] Landman U, Luedtke W D, Ribarsky M W, Barnett R N and Cleveland C L 1988 Phys. Rev. B 37 4637

Luedtke W D, Landman U, Ribarsky M W, Barnett R N and Cleveland C L 1988 Phys. Rev. B 37 4647
[6] Stolk P A, Polman A and Sinke W C 1993 Phys. Rev. B 47 5
[7] Uttormark M J, Thompson M O and Clancy P 1993 Phys. Rev. B 47 15 717
[8] Brambilla L, Colombo L, Rosato V and Cleri F 2000 Appl. Phys. Lett. 77 2337
[9] Lee M, Moon S, Hatano M, Suzuki K and Grigoropoulos C P 2000 J. Appl. Phys. 88 4994

[10] Bording J K and Taftø J 2000 Phys. Rev. B 62 8098
[11] Hatano M, Moon S, Lee M, Suzuki K and Grigoropoulos C P 2000 J. Appl. Phys. 87 36
[12] Tersoff J 1986 Phys. Rev. Lett. 56 632

Tersoff J 1988 Phys. Rev. B 37 6991
Tersoff J 1988 Phys. Rev. B 38 9902

[13] Yau S-T and Vekilov P G 2000 Nature 406 494
Seeley L H and Seidler G T 2001 Phys. Rev. Lett. 87 055702

[14] Cook S J and Clancy P 1993 Phys. Rev. B 47 7686
[15] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262

Vink R L C, Barkema G T, van der Weg W F and Mousseau N 2001 J. Non-Cryst. Solids 282 248
[16] Justo J F, Bazant M Z, Kaxiras E, Bulatov V V and Yip S 1998 Phys. Rev. B 58 2539
[17] Evans D J, Hoover W G, Failor B H, Moran B and Ladd A J C 1983 Phys. Rev. A 28 1016

Gauss K F 1829 J. R. Angew. Math. 4 232
[18] Honeycutt J D and Andersen H C 1987 J. Chem. Phys. 91 4950
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